

Interim PET with emphasis on the effect of drugs

What can we learn from animal studies?

Principles of response assessment

Early response assessment in DLBCL after 7 days of treatment

- Materials and methods
 - 29 patients
 - Newly diagnosed DLBCL
 - Treatment with R-CHOP
 - PET/CT after 7 days

Table V.1. Patients Characteristics			
	Early PET negative Early PET positive		Overall
	(n=13)	(n=17)	(n=30)
median age	63 yrs	60 yrs	61 yrs
	(range 34-79)	(range 27-79)	(range 27-7
gender			
man	4	12	16
women	9	5	14
IPI score			
low	3	6	9
low intermediate	3	3	6
high intermediate	3	4	7
high	4	4	8
bone marrow involvement			
yes	6	6	12
no	7	11	18
extranodal involvement (not bone marrow)			
yes	7	7	14
no	6	10	16
bel-2			
>30%	11	11	22
<30%	2	4	6
not known	0	2	2
bel-6			
>40%	11	7	18
<40%	1	7	8
not known	1	3	4
immunophenotype			
germinal center (GC	6	6	12
non-GC	6	8	14
unknown	1	3	4

Early response assessment in DLBCL after 7 days of treatment

29 patients

- □ 17 patients positive on early PET
 - ∠ 2 refractory disease2 relapsed (12 and 23mths)
- - □ No relapses (21 mts)

Visual: NPV=100%, PPV=24%

Quantitative: NPV= 100%, PPV=29%

$$\begin{split} SUV_{mean_all} &= 8.55 & SUV_{mean_all} &= 5.66 \\ SUV_{max_all} &= 18.34 & SUV_{max_all} &= 12.47 \\ Vol_{met_all} &= 658 \text{ ml} & Vol_{met_all} &= 361 \text{ ml} \end{split}$$

Despite a significant residual uptake on early PET, this patient obtained a complete remission at interim PET, and is still disease free after a follow-up of 29 months

CR

Early response in DLBCL after 7 days

Principle of response assessment: influence of different treatments

Intensified therapies are associated with a fast response, but...

- . Gallamini A, et al. Haematologica, 2007
 - 2xBEACOPPesc
 - Sens 50%, more false negative lesions
 - PPV 60%, more false positive lesions
- Avigdor A et al. Haematologica, 2007
 - 45 pt advanced staged HL
 - 2xBEACOPPesc, followed by 4x ABVD
 - Sens 60% spec 79% NPV 87%, PPV 45%
 - → a decrease in accuracy
 more false negative results

 more false positive results

Inflammation and its interference with early response assessment

Is inflammation important in clinical practice?

- High false positive rate after radiotherapy
- Jacene et al, JNM 2009,
 - RIT (Zevalin, Bexxar)
 - Continuous decrease in FDG-uptake 24 wks after therapy
 - → inflammatory changes with the recruitment of immune cells and high FDG-uptake

High incidence of false positive PET after rituximab in NHL

- Han et al, Ann Oncol 2009
 - 51 pt DLBCL+MCL,
 - Midtherapy (2-4 cycles): PPV= 33%, Sp 68%
 - Posttherapy: PPV=19%, Sp 80%
- Haioun et al, Blood 2005
 - 90 pt NHL, 37 rituximab, PPV 44%, Sp 70% after 2 cycles
- Moskowitz et al, JCO 2010,
 - PET after intensified RCHOP4 in 97 patients
 - 59 PET neg consolidation with ICE, excellent prognosis
 - → midtreatment negative = excellent prognosis
 - 38 PET positive 33 biopsy negative (2 sample error)
 - → high frequence of false positive midtreatment, outcome identical as PETnegative patients

False positive PET after rituximab in NHL

Baseline RCHOP 3 RCHOP 6

→ inflammatory changes with the recruitment of immune cells?

Inflammation and its interference with early response assessment

Spaepen, EJNM 2003 SCID mice with cyclophosphamide, ex-vivo measurements

Inflammation and its interference with early response assessment

- Can we improve correlation of FDG-uptake with tumor response?
 - 1. By the administration of steroids?
 - 2. By the use of other PET-tracers: FLT as a marker of cellular proliferation?
- Materials and methods
 - SCID-mouse subcutaneous injected with lymphoma cell line
 - Treatment with chemo at day 0, half the mice hydrocortisone
 - Measurements of tracer-uptake by microPET

Does the presence of anti-inflammatory drugs (corticosteroids) influences the FDG-uptake and the cellular respons after chemotherapy?

Cyclophosphamide + hydrocortisone

Alternatives for FDG? Proliferation tracers.

- Can we improve correlation of tracer uptake with tumor response by using FLT as a marker of cellular proliferation?
 - Wagner, Cancer Research 2003
 - High uptake in murine model lymphoma, correlation with BrdU in mice
 - correlation with Ki67 in patients, high grade vs low grade lymphoma

Metabolism of Thymidine

Metabolism of FLT: marker of proliferation

Response evaluation by FLT-PET

Rectumca: FDG + FLT before, during and after CRT

Inflammation and early response assessment: is FLT more accurate?

Granta cell line (Mantle cell lymphoma) in SCID mouse

FDG and FLT-uptake after cyclophosphamide

Inflammation and early response assessment: is FLT more accurate?

Illustration of the high specificity of FLT-PET compared to FDG-PET.

- (A) PET before therapy shows an extensive lymphoma localization in the proximal tibia
- (B) After chemotherapy and local radiotherapy, FDG-uptake is still clearly positive but post-radiotherapy changes can not be distinguished from persistent lymphoma
- (C) FLT-PET after therapy shows a focal uptake in the proximal tibiae which suggests persistent lymphoma (mark the high FDG-uptake in the bone marrow in the non-pathological tibia). The patient relapsed several months later.

Alternatives for FDG? Proliferation tracers.

- Can we improve correlation of tracer uptake with tumor response by using FLT as a marker of cellular proliferation?
- Metabolism ≠ proliferation: cytostatic and cell cycle targeted agents?
 - → Is FLT more accurate in cell cycle targeting therapies?

Inflammation and early response assessment: is FLT more accu

Cill Cvale

Mantel cell lymphoma R/mTOR inhibitor

Is FLT more accurate in cell cycle targetting drugs?

Early response assessment after therapy with mTOR inhibition.

(A) FDG-PET/CT before therapy (B) FLT-PET/CT before therapy (C) FLT-PET/CT one week after the first administration and (D) FDG-PET/CT after 6 weeks of therapy

The patient obtained a disease free status after a few months of therapy and is still in complete remission (36 months)

Inflammation and early response assessment: is FLT more accurate?

Granta cell line (Mantle cell lymphoma)

FDG and FLT-uptake after cyclophosphamide

Explanation?

histology after mTOR treatment showed a decreased cyclin d1 expression shortly after therapy, which increased again on D+7

- → Synchronization of the cells? Repair mechanisms?
- → Close interactions of FLT uptake with cellular metabolism

Other more specific tracers?

- Apoptosis: annexin, caspase-3 ([18F]ICMT-11)
- Lymphoma specific tracers: Recombinant anti-CD20 antibody fragments,...
- 89Zr-Zevalin
- Methionine
- FET

Opportunities of animal studies

- No limitations on numbers of scans, radiation protection: time course of tracer uptake
- Standardization
- Different treatment regimes, evaluation of the different components of a regimen
- Histological confirmation possible, ex vivo measurements of enzymes,

But...

- Evaluation of therapy response, not of "sufficient" response. Prognostic significance?
- Human cell lines in immunodeficient mice: interference with the immune system? HL?
- Syngeneic mice: growth of lymphoma-like pathology, potential to evaluate the effect of new treatment strategies (E.g. vaccination studies, Chaise, 2007, cancer immunol immunother)
- No new more accurate tracers compared to FDG have been developped, potential mainly because of their higher specificity

The future?

Animal studies allow the evaluation of

- Interaction of tracers with cellular metabolism
- Interaction of therapy with cellular metabolism
- Interactions of therapy with uptake of PET tracers

"I go home today. They cured me using this new miracle drug. I'm afraid it'll be years before it's approved for humans."