Incorporating PET into lymphoma trials: U.S. experience

Yvette Kasamon, MD Assistant Professor of Oncology and Medicine Johns Hopkins University

Objectives

- Describe integration of PET in responseadapted lymphoma trials and other trials (focus on U.S. experience)
- Consider options for managing posttherapy PET results on clinical trials

Traditional risk stratification

• IPI (aggressive NHL)^{a,b}

- Age > 60
- ECOG performance status > 2
- High LDH
- Stage III or IV
- > 1 extranodal site

IPS (advanced Hodgkin's)^c

- Age <u>></u> 45
- Stage IV
- Male
- Albumin < 4 g/dl</p>
- Hemoglobin < 10.5 g/dl</p>
- WBC > 15,000/mm³
- Lymphopenia

a) NEJM 1993; 329: 987-994 b) Sehn LH et al, Blood 2007;109:1857-1861, Fig 4; c) Hasenclever, Diehl. NEJM 1998;339:1506-14, Fig 1A.

- Prognosis depends not only on whether PET becomes negative, but how quickly this occurs
- In thinking about lymphoma trials, what is the biologic basis of this observation?

Why might midtreatment PET be superior to posttreatment?

Early PET result implies a certain rate of tumor kill

Considerations

- Recently, more variability in outcome than appreciated in previous series
- Subsets with positive interim scans do well

 not as clear-cut as previously appeared
- Concern about false positives
- Variability with PET criteria and reproducibility of reads

Response-adapted therapy

- Changing chemotherapy based on early PET
- Using PET to guide # of cycles and to tailor radiation

Johns Hopkins PET assessment

NEGATIVE

- 0 no abnormal activity (tumor cold)
- 1+ minimal activity (tumor < mediastinal blood pool)
- 2+ equivocal (tumor = or near blood pool)

POSITIVE

- 3+ moderate activity (tumor clearly > blood pool)
- 4+ strong activity (tumor much greater than blood pool)

JHH trial: EFS by interim PET

Kasamon YL et al, BBMT 2009;15:242-248

JHH trial: disease outcomes and impact of PET scale

All PET pos pts (n = 33): EFS by intention to treat

(3 pts with early progression,2 consent withdrawals)

All PET pos pts: cumulative incidence of relapse/progression

Kasamon YL et al, BBMT 2009;15:242-248

 No association between interim PET and IPI (0-2 vs 3-5); P = 0.99

• If mid PET pos, tendency toward greater relapse risk with IPI \geq 3 (HR 3.6, P = 0.07)

Johns Hopkins experience

- Early treatment intensification on basis of midtreatment PET is feasible in most pts
- Advantages of this approach, compared with conventional therapy, remain to be defined
- Relative contribution of BMT, compared with platinum- and etoposide-based salvage regimens, is uncertain
- Gradations of FDG uptake may be prognostic

MSKCC: Risk-Adapted Therapy for DLBCL

MSKCC: overall outcomes

Moskowitz CH et al, JCO 2010

PFS according to interim PET

Moskowitz CH et al, JCO 2010

PFS according to PET and

SUV in relation to biopsy result

Table 3. Correlation Between SUV and Biopsy Result

	Highest SUV at Biopsy Site (Interim PET scan)			Ratio SUV*		
Biopsy Result	Median	Minimum	Maximum	Median	Minimum	Maximum
Negative (n = 33)	3.4	1.5	11.5	1.46	-0.2	3
Positive $(n = 5)$	5.4	2	14	1.3	0.2	1.7
P (Wilcoxon test)		.25			.36	

*Ratio SUV = Log (initial SUV max at biopsy site

interim SUV max at biopsy site)

Moskowitz CH et al, JCO 2010

Considerations in trial planning

Impact of regimen

- IPI, revised IPI were also not prognostic
- A moving target?

Role of biopsy

- Prognostic significance of PET previously established without use of biopsy
- Limited prognostic data on midtreatment biopsy
- Sampling error
- All biopsies showed inflammation and/or necrosis

How positive is "positive"?

Baseline

How positive is "positive"?

2 yr median follow-up

Mikhaeel NG et al, Ann Oncol 2005;16:1514-1523, Fig 3A

Considerations in trial planning

 Reproducibility of reads in context of risk-adapted trials

Central review of interim PET; designated + or – by visual assessment

PI: Lode Swinnen

ECOG criteria for interim PET (binary result)

- Evaluate only sites abnormal at baseline
- Pos sites must have anatomic correlate
- Abnormal = focal appearance and intensity > liver
- Marrow, spleen abnormal only if focal and clear
- Symmetric foci in chest abnormal only if remaining scan is pos
- New foci considered pos only if remaining scan is pos, or if new lesion is focal, very intense, and has CT correlate

E3404: PET read reproducibility

Figure 1. Proportion of interim-PET cases interpreted as positive by reader, according to the ECOG and London criteria. Error bar represents 1 SE for the proportion.

16 – 29% interim scans read as positive
Consensus reached in 3 of 12 discordant cases Horning SJ et al, Blood 2010;115:775

E3404: PET read reproducibility

- Similar reproducibility of ECOG & London criteria
- Sources of disagreement
 - Para-aortic, spleen, bone
 - CT correlates of residual "positive" sites often absent or equivocal

SUV vs. CT measurements

Jacene HA et al, JNM 2009;50:1760

SUV vs. CT measurements

Jacene HA, JNM 2009;50:1760

Cycle 2 PET in DLBCL

3-point visual scale (65% accuracy)

Change in SUV max (76% accuracy)

Lin C et al, JNM 2007;48;1626
SUV analyses

- Potential for greater reproducibility
- Standardization critical
- Although no clear "cut-off", further prospective studies are warranted – particularly correlating with visual criteria
- May help in prognosticating "minimal residual uptake"?

* Initial bulk disease, nonbulk disease with slow response

COG study: high-risk pediatric HL

Response criteria

- Modification of revised IWG criteria
 - CR: nodal size criteria and PET neg
 - PR: nodal size criteria, either PET neg or pos

Endpoints

- Maintain comparable overall survival in rapid and slow responders through risk-adapted therapy
- Investigate whether PET1 identifies group distinct from "rapid early responders" (e.g. PET1+, PET2-), who might require augmented therapy

U.S. observational studies: example

- CALGB imaging protocol for de novo DLBCL
- Centralized PET review: 5-point visual scale and SUVs

Baseline PET/CT \rightarrow R-CHOP vs R-EPOCH \rightarrow PET/CT post cycle 2 and cycle 6 (no intervention)

Negative

- 0 no abnormal activity (tumor cold)
- 1+ minimal activity (tumor < background)
- 2+ equivocal (tumor = background)

Positive

- 3+ moderate activity (tumor > background)
- 4+ marked activity

Managing a positive post-therapy PET

 Extending course of chemotherapy?
Doubtful that additional cycles of same chemo will help, even if brisk CT response

Managing a positive post-therapy PET

- Extending course of chemotherapy?
- Adding radiation?
 - Radiation may complicate future therapies
 - Chemoresistance and radioresistance often coexist
 - Should not assume radiation is natural next step.
 - Positive PET may identify subset who stand NOT to benefit from radiation

Radiation in residually PET+ pts

Kahn et al, Int J Rad Onc Biol Phys 2006; 66: 961-965

Advani R et al, JCO 2007;25:3902

Managing a positive post-therapy PET

- Extending course of chemotherapy?
- Adding radiation?
- Intensifying treatment, possibly with BMT?

 Before considering escalating therapy, outside a trial, confirm disease persistence

False positives: implications for trial planning

Transverse PET, lower thoracic region

Sugawara Y et al, JCO 1998; 16: 173

False positives after Hodgkin's therapy: implications for trial planning

CT Transaxials

Inflammatory node (SUV 9.4)

Thymic hyperplasia (SUV 3.7)

Brown fat (SUV 13)

Castellucci P, Nuc Med Commun 2005; 26: 689

An 18 year old with HL

Baseline

End of chemo

3 mo after chemo

Negative mid-PET: de-escalate therapy?

- Studying this makes sense but...
- A true negative PET may not mean ultimate eradication of disease
- Caution with early cessation of chemo (many logs of tumor may remain, depending in part on timing of PET)
- (For same reason, focusing radiation on residual PET+ foci, while reducing toxicity, may be ineffective)

Considerations: trial design

- Potential to more precisely tailor treatment to the individual patient
 - Changing definition of disease response
 - Changing risk stratification
- Prognostic significance not as clear-cut as earlier series suggested
- Prognostic value may reflect efficacy of the chemotherapy regimen

Considerations: trial design

- Investigation of SUV criteria: prospective analysis, comparison to visual criteria
- Threshold for treatment modification
- Role of biopsy
- Reproducibility of reads
- Conservative strategy best outside of a trial